《我是你的妈妈呀》 * 第一期
最后更新于
最后更新于
记得我初中的时候,学校发的一个小册子的名字就是母题啥的。
大概意思是市面上的题(尤其是中考题)都是这些母题生的,都是它们的儿子。
熟悉我的朋友应该知道,我有一个风格:”喜欢用通俗易懂的语言以及图片,还原解题过程“。包括我是如何抽象的,如何与其他题目建立联系的等。比如:
如果把这个思考过程称之为自顶向下的话,那么实际上能写出来取决于你:
是否有良好的抽象能力
是否有足够的基础知识
是否能与学过的基础知识建立联系
如果反着呢? 我先把所有抽象之后的纯粹的东西掌握,也就是母题。那么遇到新的题,我就往上套呗?这就是我在《LeetCode 题解仓库》中所说的只有熟练掌握基础的数据结构与算法,才能对复杂问题迎刃有余。 这种思路就是自底向上。(有点像动态规划?) 市面上的题那么多,但是题目类型就是那几种。甚至出题人出题的时候都是根据以前的题目变个条件,变个说法从而搞出一个“新”的题。
这个专题的目标就是从反的方向来,我们先学习和记忆底层的被抽象过的经典的题目。遇到新的题目,就往这些母题上套即可。
那让我们来自底向上看下第一期的这八道母题吧~
给你两个有序的非空数组 nums1 和 nums2,让你从每个数组中分别挑一个,使得二者差的绝对值最小。
初始化 ans 为无限大
使用两个指针,一个指针指向数组 1,一个指针指向数组 2
比较两个指针指向的数字的大小,并更新较小的那个的指针,使其向后移动一位。更新的过程顺便计算 ans
最后返回 ans
复杂度分析
时间复杂度:$O(N)$
空间复杂度:$O(1)$
给你两个非空数组 nums1 和 nums2,让你从每个数组中分别挑一个,使得二者差的绝对值最小。
数组没有说明是有序的,可以选择暴力。两两计算绝对值,返回最小的即可。
代码:
复杂度分析
时间复杂度:$O(N ^ 2)$
空间复杂度:$O(1)$
由于暴力的时间复杂度是 $O(N^2)$,因此其实也可以先排序将问题转换为母题 1,然后用母题 1 的解法求解。
复杂度分析
时间复杂度:$O(NlogN)$
空间复杂度:$O(1)$
给你 k 个有序的非空数组,让你从每个数组中分别挑一个,使得二者差的绝对值最小。
继续使用母题 1 的思路,使用 k 个 指针即可。
复杂度分析
时间复杂度:$O(klogM)$,其中 M 为 k 个非空数组的长度的最小值。
空间复杂度:$O(1)$
我们也可以使用堆来处理,代码更简单,逻辑更清晰。这里我们使用小顶堆,作用就是选出最小值。
复杂度分析
建堆的时间和空间复杂度为 $O(k)$。
while 循环会执行 M 次 ,其中 M 为 k 个非空数组的长度的最小值。heappop 和 heappush 的时间复杂度都是 logk。因此 while 循环总的时间复杂度为 $O(Mlogk)$。
时间复杂度:$O(max(Mlogk, k))$,其中 M 为 k 个非空数组的长度的最小值。
空间复杂度:$O(k)$
给你 k 个非空数组,让你从每个数组中分别挑一个,使得二者差的绝对值最小。
先排序,然后转换为母题 3
给你两个有序的非空数组 nums1 和 nums2,让你将两个数组合并,使得新的数组有序。
LeetCode 地址: https://leetcode-cn.com/problems/merge-sorted-array/
和母题 1 类似。
复杂度分析
时间复杂度:$O(N)$
空间复杂度:$O(1)$
给你 k 个有序的非空数组 nums1 和 nums2,让你将 k 个数组合并,使得新的数组有序。
和母题 5 类似。 只不过不是两个,而是多个。我们继续套用堆的思路。
复杂度分析
建堆的时间和空间复杂度为 $O(N)$。
heappop 的时间复杂度为 $O(logN)$。
时间复杂度:$O(NlogN)$,其中 N 是矩阵中的数字总数。
空间复杂度:$O(N)$,其中 N 是矩阵中的数字总数。
给你两个有序的链表 root1 和 root2,让你将两个链表合并,使得新的链表有序。
LeetCode 地址:https://leetcode-cn.com/problems/merge-two-sorted-lists/
和母题 5 类似。 不同的地方在于数据结构从数组变成了链表,我们只需要注意链表的操作即可。
这里我使用了迭代和递归两种方式。
大家可以把母题 5 使用递归写一下。
复杂度分析
时间复杂度:$O(N)$,其中 N 为两个链表中较短的那个的长度。
空间复杂度:$O(N)$,其中 N 为两个链表中较短的那个的长度。
复杂度分析
时间复杂度:$O(N)$,其中 N 为两个链表中较短的那个的长度。
空间复杂度:$O(1)$
给你 k 个有序的链表,让你将 k 个链表合并,使得新的链表有序。
LeetCode 地址:https://leetcode-cn.com/problems/merge-k-sorted-lists/
和母题 7 类似,我们使用递归可以轻松解决。其实本质上就是
复杂度分析
mergeKLists 执行了 k 次,每次都执行一次 mergeTwoLists,mergeTwoLists 的时间复杂度前面已经分析过了,为 $O(N)$,其中 N 为两个链表中较短的那个的长度。
时间复杂度:$O(k * N)$,其中 N 为两个链表中较短的那个的长度
空间复杂度:$O(max(k, N))$
复杂度分析
mergeKLists 执行了 logk 次,每次都执行一次 mergeTwoLists,mergeTwoLists 的时间复杂度前面已经分析过了,为 $O(N)$,其中 N 为两个链表中较短的那个的长度。
时间复杂度:$O(Nlogk)$,其中 N 为两个链表中较短的那个的长度
空间复杂度:$O(max(logk, N))$,其中 N 为两个链表中较短的那个的长度
最后送大家一张全家福:
实际子题数量有很多,这里提供几个供大家练习。一定要练习,不能眼高手低。多看我的题解,多练习,多总结,你也可以的。
两数和,三数和,四数和。。。 k 数和
母题就是抽象之后的纯粹的东西。如果你掌握了母题,即使没有掌握抽象的能力,依然有可能套出来。但是随着题目做的变多,“抽象能力”也会越来越强。因为你知道这些题背后是怎么产生的。
本期给大家介绍了八道母题, 大家可以在之后的刷题过程中尝试使用母题来套模板。之后会给大家带来更多的母题。
大家对此有何看法,欢迎给我留言,我有时间都会一一查看回答。更多算法套路可以访问我的 LeetCode 题解仓库:https://github.com/azl397985856/leetcode 。 目前已经 37K star 啦。 大家也可以关注我的公众号《力扣加加》带你啃下算法这块硬骨头。