0032. 最长有效括号
题目地址(32. 最长有效括号)
https://leetcode-cn.com/problems/longest-valid-parentheses/
题目描述
给定一个只包含 '(' 和 ')' 的字符串,找出最长的包含有效括号的子串的长度。
示例 1:
输入: "(()"
输出: 2
解释: 最长有效括号子串为 "()"
示例 2:
输入: ")()())"
输出: 4
解释: 最长有效括号子串为 "()()"
前置知识
动态规划
暴力(超时)
公司
阿里
腾讯
百度
字节
思路
符合直觉的做法是:分别计算以 i 开头的 最长有效括号(i 从 0 到 n - 1·),从中取出最大的即可。
代码
代码支持: Python
复杂度分析
时间复杂度:$O(N^2)$
空间复杂度:$O(1)$
栈
思路
主要思路和常规的括号解法一样,遇到'('入栈,遇到')'出栈,并计算两个括号之间的长度。 因为这个题存在非法括号对的情况且求是合法括号对的最大长度 所以有两个注意点是:
栈中存的是符号的下标
当栈为空时且当前扫描到的符号是')'时,需要将这个符号入栈作为分割符
栈中初始化一个 -1,作为分割符
代码
语言支持: Python, javascript, CPP
javascript code:
Python Code:
CPP Code:
复杂度分析
时间复杂度:$O(N)$
空间复杂度:$O(N)$
O(1) 空间
思路
我们可以采用解法一中的计数方法。
从左到右遍历一次,并分别记录左右括号的数量 left 和 right。
如果 right > left ,说明截止上次可以匹配的点到当前点这一段无法匹配,重置 left 和 right 为 0
如果 right == left, 此时可以匹配,此时有效括号长度为 left + right,我们获得一个局部最优解。如果其比全局最优解大,我们更新全局最优解
值得注意的是,对形如 (((() 这样的,更新全局最优解的逻辑永远无法执行。一种方式是再从右往左遍历一次即可,具体看代码。
类似的思想有哨兵元素,虚拟节点。只不过本题无法采用这种方法。
代码
代码支持:Java,Python3, CPP
Java Code:
Python3 Code:
CPP Code:
动态规划
思路
所有的动态规划问题, 首先需要解决的就是如何寻找合适的子问题. 该题需要我们找到最长的有效括号对, 我们首先想到的就是定义dp[i]为前 i 个字符串的最长有效括号对长度, 但是随后我们会发现, 这样的定义, 我们无法找到 dp[i]和 dp[i-1]的任何关系. 所以, 我们需要重新找一个新的定义: 定义dp[i]为以第 i 个字符结尾的最长有效括号对长度. 然后, 我们通过下面这个例子找一下 dp[i]和 dp[i-1]之间的关系.
从上面的例子我们可以观察出一下几点结论(描述中 i 为图中的 dp 数组的下标, 对应 s 的下标应为 i-1, 第 i 个字符的 i 从 1 开始).
base case: 空字符串的最长有效括号对长度肯定为 0, 即: dp[0] = 0;
s 的第1个字符结尾的最长有效括号对长度为 0, s 的第2个字符结尾的最长有效括号对长度也为 0, 这个时候我们可以得出结论: 最长有效括号对不可能以'('结尾, 即: dp[1] = d[2] = 0;
当 i 等于 3 时, 我们可以看出 dp[2]=0, dp[3]=2, 因为第 2 个字符(s[1])和第 3 个字符(s[2])是配对的; 当 i 等于 4 时, 我们可以看出 dp[3]=2, dp[4]=4, 因为我们配对的是第 1 个字符(s[0])和第 4 个字符(s[3]); 因此, 我们可以得出结论: 如果第i个字符和第i-1-dp[i-1]个字符是配对的, 则 dp[i] = dp[i-1] + 2, 其中: i-1-dp[i-1] >= 1, 因为第 0 个字符没有任何意义;
根据第 3 条规则来计算的话, 我们发现 dp[5]=0, dp[6]=2, 但是显然, dp[6]应该为 6 才对, 但是我们发现可以将"(())"和"()"进行拼接, 即: dp[i] += dp[i-dp[i]], 即: dp[6] = 2 + dp[6-2] = 2 + dp[4] = 6
根据以上规则, 我们求解 dp 数组的结果为: [0, 0, 0, 2, 4, 0, 6, 0], 其中最长有效括号对的长度为 6. 以下为图解: 
代码
代码支持:Python3, CPP
Python3 Code:
CPP Code:
复杂度分析
时间复杂度:$O(N)$
空间复杂度:$O(N)$
关键点解析
第 3 点特征, 需要检查的字符是 s[i-1]和 s[i-2-dp[i-1]], 根据定义可知: i-1 >= dp[i-1], 但是 i-2 不一定大于 dp[i-1], 因此, 需要检查越界;
第 4 点特征最容易遗漏, 还有就是不需要检查越界, 因为根据定义可知: i >= dp[i], 所以 dp[i-dp[i]]的边界情况是 dp[0];
相关题目
扩展
如果判断的不仅仅只有'('和')', 还有'[', ']', '{'和'}', 该怎么办?
如果输出的不是长度, 而是任意一个最长有效括号对的字符串, 该怎么办?
大家对此有何看法,欢迎给我留言,我有时间都会一一查看回答。更多算法套路可以访问我的 LeetCode 题解仓库:https://github.com/azl397985856/leetcode 。 目前已经 37K star 啦。 大家也可以关注我的公众号《力扣加加》带你啃下算法这块硬骨头。 
最后更新于
这有帮助吗?