0378. 有序矩阵中第 K 小的元素

题目地址(378. 有序矩阵中第 K 小的元素)

https://leetcode-cn.com/problems/kth-smallest-element-in-a-sorted-matrix/

题目描述

给定一个 n x n 矩阵,其中每行和每列元素均按升序排序,找到矩阵中第 k 小的元素。
请注意,它是排序后的第 k 小元素,而不是第 k 个不同的元素。

 

示例:

matrix = [
   [ 1,  5,  9],
   [10, 11, 13],
   [12, 13, 15]
],
k = 8,

返回 13。
 

提示:
你可以假设 k 的值永远是有效的,1 ≤ k ≤ n2 。

前置知识

  • 二分查找

公司

  • 阿里

  • 腾讯

  • 字节

思路

显然用大顶堆可以解决,时间复杂度 Klogn,其中 n 为矩阵中总的数字个数。但是这种做法没有利用题目中 sorted matrix 的特点(横向和纵向均有序),因此不是一种好的做法.

一个巧妙的方法是二分法,我们分别从第一个和最后一个向中间进行扫描,并且计算出中间的数值与数组中的进行比较,可以通过计算中间值在这个数组中排多少位,然后得到比中间值小的或者大的数字有多少个,然后与 k 进行比较,如果比 k 小则说明中间值太小了,则向后移动,否则向前移动。

这个题目的二分确实很难想,我们来一步一步解释。

最普通的二分法是有序数组中查找指定值(或者说满足某个条件的值)这种思路比较直接,但是对于这道题目是二维矩阵,而不是一维数组,因此这种二分思想就行不通了。

(普通的一维二分法)

而实际上:

  • 我们能够找到矩阵中最大的元素(右下角)和最小的元素(左上角)。接下来我们可以求出值的中间,而不是上面那种普通二分法的索引的中间。

  • 找到中间值之后,我们可以拿这个值去计算有多少元素是小于等于它的。具体方式就是比较行的最后一列,如果中间值比最后一列大,说明中间元素肯定大于这一行的所有元素。 否则我们从后往前遍历直到不大于。

  • 上一步我们会计算一个 count,我们拿这个 count 和 k 进行比较

  • 如果 count 小于 k,说明我们选择的中间值太小了,肯定不符合条件,我们需要调整左区间为 mid + 1

  • 如果 count 大于 k,说明我们选择的中间值正好或者太大了。我们调整右区间 mid

由于 count 大于 k 也可能我们选择的值是正好的, 因此这里不能调整为 mid - 1, 否则可能会得不到结果

  • 最后直接返回 start, end, 或者 mid 都可以,因此三者最终会收敛到矩阵中的一个元素,这个元素也正是我们要找的元素。

关于如何计算 count,我们可以从左下或者右上角开始,每次移动一个单位,直到找到一个值大于等于中间值,然后计算出 count,具体见下方代码。

整个计算过程是这样的:

这里有一个大家普遍都比较疑惑的点,就是“能够确保最终我们找到的元素一定在矩阵中么?”

答案是可以, 因为我们可以使用最左二分,这样假设我们找到的元素不在矩阵,那么我们一定可以找到比它小的在矩阵中的值,这和我们的假设(最左二分)矛盾

不懂最左二分请看我的二分专题。

关键点解析

  • 二分查找

  • 有序矩阵的套路(文章末尾还有一道有序矩阵的题目)

  • 堆(优先级队列)

代码

代码支持:JS,Python3,CPP

JS:

/*
 * @lc app=leetcode id=378 lang=javascript
 *
 * [378] Kth Smallest Element in a Sorted Matrix
 */
function notGreaterCount(matrix, target) {
  // 等价于在matrix 中搜索mid,搜索的过程中利用有序的性质记录比mid小的元素个数

  // 我们选择左下角,作为开始元素
  let curRow = 0;
  // 多少列
  const COL_COUNT = matrix[0].length;
  // 最后一列的索引
  const LAST_COL = COL_COUNT - 1;
  let res = 0;

  while (curRow < matrix.length) {
    // 比较最后一列的数据和target的大小
    if (matrix[curRow][LAST_COL] < target) {
      res += COL_COUNT;
    } else {
      let i = COL_COUNT - 1;
      while (i < COL_COUNT && matrix[curRow][i] > target) {
        i--;
      }
      // 注意这里要加1
      res += i + 1;
    }
    curRow++;
  }

  return res;
}
/**
 * @param {number[][]} matrix
 * @param {number} k
 * @return {number}
 */
var kthSmallest = function (matrix, k) {
  if (matrix.length < 1) return null;
  let start = matrix[0][0];
  let end = matrix[matrix.length - 1][matrix[0].length - 1];
  while (start < end) {
    const mid = start + ((end - start) >> 1);
    const count = notGreaterCount(matrix, mid);
    if (count < k) start = mid + 1;
    else end = mid;
  }
  // 返回start,mid, end 都一样
  return start;
};

Python3:

class Solution:
    def kthSmallest(self, matrix: List[List[int]], k: int) -> int:
        n = len(matrix)

        def check(mid):
            row, col = n - 1, 0
            num = 0
            while row >= 0 and col < n:
                # 增加 col
                if matrix[row][col] <= mid:
                    num += row + 1
                    col += 1
                # 减少 row
                else:
                    row -= 1
            return num >= k

        left, right = matrix[0][0], matrix[-1][-1]
        while left <= right:
            mid = (left + right) // 2
            if check(mid):
                right = mid - 1
            else:
                left = mid + 1

        return left

CPP Code:

class Solution {
public:
    bool check(vector<vector<int>>& matrix, int mid, int k, int n) {
        int row = n - 1;
        int col = 0;
        int num = 0;
        while (row >= 0 && col < n) {
            if (matrix[row][col] <= mid) {
                num += i + 1;
                col++;
            } else {
                row--;
            }
        }
        return num >= k;
    }

    int kthSmallest(vector<vector<int>>& matrix, int k) {
        int n = matrix.size();
        int left = matrix[0][0];
        int right = matrix[n - 1][n - 1];
        while (left <= right) {
            int mid = left + ((right - left) >> 1);
            if (check(matrix, mid, k, n)) {
                right = mid - 1;
            } else {
                left = mid + 1;
            }
        }
        return left;
    }
};

复杂度分析

  • 时间复杂度:二分查找进行次数为 $O(log(r-l))$,每次操作时间复杂度为 O(n),因此总的时间复杂度为 $O(nlog(r-l))$。

  • 空间复杂度:$O(1)$。

相关题目

最后更新于