最大子序列和是一道经典的算法题, leetcode 也有原题《53.maximum-sum-subarray》,今天我们就来彻底攻克它。
题目描述
求取数组中最大连续子序列和,例如给定数组为 A = [1, 3, -2, 4, -5], 则最大连续子序列和为 6,即 1 + 3 +(-2)+ 4 = 6。 去
首先我们来明确一下题意。
比如:
对于数组 [1, -2, 3, 5, -3, 2], 应该返回 3 + 5 = 8
对于数组 [0, -2, 3, 5, -1, 2], 应该返回 3 + 5 + -1 + 2 = 9
对于数组 [-9, -2, -3, -5, -3], 应该返回 -2
解法一 - 暴力法(超时法)
一般情况下,先从暴力解分析,然后再进行一步步的优化。
思路
我们来试下最直接的方法,就是计算所有的子序列的和,然后取出最大值。 记 Sum[i,....,j]为数组 A 中第 i 个元素到第 j 个元素的和,其中 0 <= i <= j < n, 遍历所有可能的 Sum[i,....,j] 即可。
我们去枚举以 0,1,2...n-1 开头的所有子序列即可, 对于每一个开头的子序列,我们都去枚举从当前开始到 n-1 的所有情况。
这种做法的时间复杂度为 O(N^2), 空间复杂度为 O(1)。
代码
JavaScript:
复制 function LSS (list) {
const len = list . length ;
let max = - Number .MAX_VALUE;
let sum = 0 ;
for ( let i = 0 ; i < len; i ++ ) {
sum = 0 ;
for ( let j = i; j < len; j ++ ) {
sum += list[j];
if (sum > max) {
max = sum;
}
}
}
return max;
}
Java:
复制 class MaximumSubarrayPrefixSum {
public int maxSubArray ( int [] nums) {
int len = nums . length ;
int maxSum = Integer . MIN_VALUE ;
int sum = 0 ;
for ( int i = 0 ; i < len; i ++ ) {
sum = 0 ;
for ( int j = i; j < len; j ++ ) {
sum += nums[j];
maxSum = Math . max (maxSum , sum);
}
}
return maxSum;
}
}
Python 3:
复制 import sys
class Solution :
def maxSubArray ( self , nums : List [ int ] ) -> int :
n = len (nums)
maxSum = - sys . maxsize
sum = 0
for i in range (n):
sum = 0
for j in range (i, n):
sum += nums [ j ]
maxSum = max (maxSum, sum )
return maxSum
空间复杂度非常理想,但是时间复杂度有点高。怎么优化呢?我们来看下下一个解法。
解法二 - 分治法
思路
我们来分析一下这个问题, 我们先把数组平均分成左右两部分。
此时有三种情况:
对于前两种情况,我们相当于将原问题转化为了规模更小的同样问题。
对于第三种情况,由于已知循环的起点(即中点),我们只需要进行一次循环,分别找出 左边和右边的最大子序列即可。
所以一个思路就是我们每次都对数组分成左右两部分,然后分别计算上面三种情况的最大子序列和, 取出最大的即可。
举例说明,如下图:
这种做法的时间复杂度为 O(N*logN), 空间复杂度为 O(1)。
代码
JavaScript:
复制 function helper (list , m , n) {
if (m === n) return list[m];
let sum = 0 ;
let lmax = - Number .MAX_VALUE;
let rmax = - Number .MAX_VALUE;
const mid = ((n - m) >> 1 ) + m;
const l = helper (list , m , mid);
const r = helper (list , mid + 1 , n);
for ( let i = mid; i >= m; i -- ) {
sum += list[i];
if (sum > lmax) lmax = sum;
}
sum = 0 ;
for ( let i = mid + 1 ; i <= n; i ++ ) {
sum += list[i];
if (sum > rmax) rmax = sum;
}
return Math .max (l , r , lmax + rmax);
}
function LSS (list) {
return helper (list , 0 , list . length - 1 );
}
Java:
复制 class MaximumSubarrayDivideConquer {
public int maxSubArrayDividConquer ( int [] nums) {
if (nums == null || nums . length == 0 ) return 0 ;
return helper(nums , 0 , nums . length - 1 ) ;
}
private int helper ( int [] nums , int l , int r) {
if (l > r) return Integer . MIN_VALUE ;
int mid = (l + r) >>> 1 ;
int left = helper(nums , l , mid - 1 ) ;
int right = helper(nums , mid + 1 , r) ;
int leftMaxSum = 0 ;
int sum = 0 ;
// left surfix maxSum start from index mid - 1 to l
for ( int i = mid - 1 ; i >= l; i -- ) {
sum += nums[i];
leftMaxSum = Math . max (leftMaxSum , sum);
}
int rightMaxSum = 0 ;
sum = 0 ;
// right prefix maxSum start from index mid + 1 to r
for ( int i = mid + 1 ; i <= r; i ++ ) {
sum += nums[i];
rightMaxSum = Math . max (sum , rightMaxSum);
}
// max(left, right, crossSum)
return Math . max (leftMaxSum + rightMaxSum + nums[mid] , Math . max (left , right));
}
}
Python 3 :
复制 import sys
class Solution :
def maxSubArray ( self , nums : List [ int ] ) -> int :
return self . helper (nums, 0 , len (nums) - 1 )
def helper ( self , nums , l , r ):
if l > r :
return - sys . maxsize
mid = (l + r) // 2
left = self . helper (nums, l, mid - 1 )
right = self . helper (nums, mid + 1 , r)
left_suffix_max_sum = right_prefix_max_sum = 0
sum = 0
for i in reversed ( range (l, mid)):
sum += nums [ i ]
left_suffix_max_sum = max (left_suffix_max_sum, sum )
sum = 0
for i in range (mid + 1 , r + 1 ):
sum += nums [ i ]
right_prefix_max_sum = max (right_prefix_max_sum, sum )
cross_max_sum = left_suffix_max_sum + right_prefix_max_sum + nums [ mid ]
return max (cross_max_sum, left, right)
解法三 - 动态规划
思路
我们来思考一下这个问题, 看能不能将其拆解为规模更小的同样问题,并且能找出 递推关系。
我们不妨假设问题 Q(list, i) 表示 list 中以索引 i 结尾的情况下最大子序列和, 那么原问题就转化为 Q(list, i), 其中 i = 0,1,2...n-1 中的最大值。
我们继续来看下递归关系,即 Q(list, i)和 Q(list, i - 1)的关系, 即如何根据 Q(list, i - 1) 推导出 Q(list, i)。
如果已知 Q(list, i - 1), 我们可以将问题分为两种情况,即以索引为 i 的元素终止, 或者只有一个索引为 i 的元素。
如果以索引为 i 的元素终止, 那么就是 Q(list, i - 1) + list[i]
如果只有一个索引为 i 的元素,那么就是 list[i]
分析到这里,递推关系就很明朗了,即Q(list, i) = Math.max(0, Q(list, i - 1)) + list[i]
举例说明,如下图:
这种算法的时间复杂度 O(N), 空间复杂度为 O(1)
代码
JavaScript:
复制 function LSS (list) {
const len = list . length ;
let max = list[ 0 ];
for ( let i = 1 ; i < len; i ++ ) {
list[i] = Math .max ( 0 , list[i - 1 ]) + list[i];
if (list[i] > max) max = list[i];
}
return max;
}
Java:
复制 class MaximumSubarrayDP {
public int maxSubArray ( int [] nums) {
int currMaxSum = nums[ 0 ];
int maxSum = nums[ 0 ];
for ( int i = 1 ; i < nums . length ; i ++ ) {
currMaxSum = Math . max (currMaxSum + nums[i] , nums[i]);
maxSum = Math . max (maxSum , currMaxSum);
}
return maxSum;
}
}
Python 3:
复制 class Solution :
def maxSubArray ( self , nums : List [ int ] ) -> int :
n = len (nums)
max_sum_ending_curr_index = max_sum = nums [ 0 ]
for i in range ( 1 , n):
max_sum_ending_curr_index = max (max_sum_ending_curr_index + nums[i], nums[i])
max_sum = max (max_sum_ending_curr_index, max_sum)
return max_sum
解法四 - 数学分析
思路
我们来通过数学分析来看一下这个题目。
我们定义函数 S(i) ,它的功能是计算以 0(包括 0)开始加到 i(包括 i)的值。
那么 S(j) - S(i - 1) 就等于 从 i 开始(包括 i)加到 j(包括 j)的值。
我们进一步分析,实际上我们只需要遍历一次计算出所有的 S(i), 其中 i 等于 0,1,2....,n-1。 然后我们再减去之前的 S(k),其中 k 等于 0,1,i - 1,中的最小值即可。 因此我们需要 用一个变量来维护这个最小值,还需要一个变量维护最大值。
这种算法的时间复杂度 O(N), 空间复杂度为 O(1)。
其实很多题目,都有这样的思想, 比如之前的《每日一题 - 电梯问题》。
代码
JavaScript:
复制 function LSS (list) {
const len = list . length ;
let max = list[ 0 ];
let min = 0 ;
let sum = 0 ;
for ( let i = 0 ; i < len; i ++ ) {
sum += list[i];
if (sum - min > max) max = sum - min;
if (sum < min) {
min = sum;
}
}
return max;
}
Java:
复制 class MaxSumSubarray {
public int maxSubArray3 ( int [] nums) {
int maxSum = nums[ 0 ];
int sum = 0 ;
int minSum = 0 ;
for ( int num : nums) {
// prefix Sum
sum += num;
// update maxSum
maxSum = Math . max (maxSum , sum - minSum);
// update minSum
minSum = Math . min (minSum , sum);
}
return maxSum;
}
}
Python 3:
复制 class Solution :
def maxSubArray ( self , nums : List [ int ] ) -> int :
n = len (nums)
maxSum = nums [ 0 ]
minSum = sum = 0
for i in range (n):
sum += nums [ i ]
maxSum = max (maxSum, sum - minSum)
minSum = min (minSum, sum )
return maxSum
总结
我们使用四种方法解决了《最大子序列和问题》
, 并详细分析了各个解法的思路以及复杂度,相信下次你碰到相同或者类似的问题 的时候也能够发散思维,做到一题多解,多题一解
。
实际上,我们只是求出了最大的和,如果题目进一步要求出最大子序列和的子序列呢? 如果要题目允许不连续呢? 我们又该如何思考和变通?如何将数组改成二维,求解最大矩阵和怎么计算? 这些问题留给读者自己来思考。