0322. 零钱兑换

题目地址(322. 零钱兑换)

https://leetcode-cn.com/problems/coin-change/

题目描述

给定不同面额的硬币 coins 和一个总金额 amount。编写一个函数来计算可以凑成总金额所需的最少的硬币个数。如果没有任何一种硬币组合能组成总金额,返回 -1。

你可以认为每种硬币的数量是无限的。

 

示例 1:

输入:coins = [1, 2, 5], amount = 11
输出:3
解释:11 = 5 + 5 + 1
示例 2:

输入:coins = [2], amount = 3
输出:-1
示例 3:

输入:coins = [1], amount = 0
输出:0
示例 4:

输入:coins = [1], amount = 1
输出:1
示例 5:

输入:coins = [1], amount = 2
输出:2
 

提示:

1 <= coins.length <= 12
1 <= coins[i] <= 231 - 1
0 <= amount <= 104

前置知识

公司

  • 腾讯

  • 百度

  • 字节

  • 阿里巴巴(盒马生鲜)

岗位信息

  • 阿里巴巴(盒马生鲜):前端技术二面

思路

假如我们把 coin 逆序排列,然后从面值大的开始取,如果取了当前硬币后金额仍有小于 amount,则继续取。

举个例子:

eg: 对于 [1,2,5] 组成 11 块

- 排序[5,2,1]

- 取第一个5, 更新amout 为 11 - 5 = 6 (1⃣️)
      6 > 5 继续更新 为 6 - 5 = 1 (2⃣️)
      1 < 5 退出

- 取第二个2
      1 < 2 退出

- 取最后一个元素,也就是1

      1 === 1 更新为 1 - 1 = 0 (3⃣️)

- amout 为 0 退出


因此结果是 3

熟悉贪心算法的同学应该已经注意到了,这就是贪心算法,贪心算法想要使得 amount 尽快地变得更小

贪心算法通常时间复杂度更低,但对这道题目来说,贪心是不正确的!要证明它的错误,只需要随便举一个反例即可。 比如 coins = [1, 5, 11] amout = 15, 使用贪心就会得到错误的结果。 因此这种做法有时候不靠谱,我们还是采用靠谱的做法.

如果我们暴力求解,对于所有的组合都计算一遍,然后比较, 那么这样的复杂度是 2 的 n 次方(这个可以通过数学公式证明,这里不想啰嗦了),这个是不可以接受的。

暴力法枚举过程实际上有很多重复子问题,我们一般称重叠子问题。对于重叠子问题,我们可以使用备忘录来解决。

以 coins = [1,2,3], amount = 6 来说,我们可以画出如下的递归树。

(图片来自https://leetcode.com/problems/coin-change/solution/)

如上图 F(1) 被重复计算了 13 次!!如何消除重叠子问题?答案是记忆化递归或者动态规划,二者没有本质区别。

这里以自底向上的动态规划为例讲解一下。比较容易想到的是二维数组存放 F(n) 。

定义 dp[i][j] 为使用 coins 的前 j 项组成 金额 i 的最少硬币数。对于动态规划问题,最关键的是决策(不包含决策的是递推式动态规划)。对于动态规划的决策的技巧就是:仅关心最后一步和前一步,不考虑其他部分是如何达成的。

对于这道题来说,最后一步就是选择第 j 个硬币还是不选择第 j 个硬币。

  • 如果选择第 j 个硬币,那么 dp[i][j] = min(dp[i][j - 1], dp[i - coins[j - 1]][j] + 1)

注意:dp[i - coins[j - 1]][j] 含义是硬币无限取, dp[i - coins[j - 1]][j - 1] 的含义就变成了硬币最多取一次

  • 否则 dp[i][j] = dp[i][j - 1]

class Solution:
    def coinChange(self, coins: List[int], amount: int) -> int:
        if amount < 0:
            return - 1
        dp = [[amount + 1 for _ in range(len(coins) + 1)]
              for _ in range(amount + 1)]

        # 初始化第一行为0,其他为最大值(也就是amount + 1)
        for j in range(len(coins) + 1):
            dp[0][j] = 0

        for i in range(1, amount + 1):
            for j in range(1, len(coins) + 1):
                # 注意:dp[i - coins[j - 1]][j] 含义是硬币无限取, dp[i - coins[j - 1]][j - 1] 的含义就变成了硬币最多取一次
                if i - coins[j - 1] >= 0:
                    dp[i][j] = min(
                        dp[i][j - 1], dp[i - coins[j - 1]][j] + 1)
                else:
                    dp[i][j] = dp[i][j - 1]

        return -1 if dp[-1][-1] == amount + 1 else dp[-1][-1]

复杂度分析

  • 时间复杂度:$O(amonut * len(coins))$

  • 空间复杂度:$O(amount * len(coins))$

dp[i][j] 依赖于dp[i][j - 1]dp[i - coins[j - 1]][j] + 1) 这是一个优化的信号,我们可以将其优化到一维。

用 dp[i] 来表示组成 i 块钱,需要最少的硬币数,那么

  1. 第 j 个硬币我可以选择不拿 这个时候, 硬币数 = dp[i]

  2. 第 j 个硬币我可以选择拿 这个时候, 硬币数 = dp[i - coins[j]] + 1

和 01 背包问题不同, 硬币是可以拿任意个,对于每一个 dp[i] 我们都选择遍历一遍 coin, 不断更新 dp[i]

关键点解析

  • 分析出是典型的完全背包问题

代码

  • 语言支持:JS,C++,Python3

JavaScript Code:

var coinChange = function (coins, amount) {
  if (amount === 0) {
    return 0;
  }
  const dp = Array(amount + 1).fill(Number.MAX_VALUE);
  dp[0] = 0;
  for (let i = 1; i < dp.length; i++) {
    for (let j = 0; j < coins.length; j++) {
      if (i - coins[j] >= 0) {
        dp[i] = Math.min(dp[i], dp[i - coins[j]] + 1);
      }
    }
  }

  return dp[dp.length - 1] === Number.MAX_VALUE ? -1 : dp[dp.length - 1];
};

C++ Code:

C++中采用 INT_MAX,因此判断时需要加上dp[a - coin] < INT_MAX以防止溢出

class Solution {
public:
    int coinChange(vector<int>& coins, int amount) {
        auto dp = vector<int>(amount + 1, INT_MAX);
        dp[0] = 0;
        for (auto a = 1; a <= amount; ++a) {
            for (const auto & coin : coins) {
                if (a >= coin && dp[a - coin] < INT_MAX) {
                    dp[a] = min(dp[a], dp[a-coin] + 1);
                }
            }
        }
        return dp[amount] == INT_MAX ? -1 : dp[amount];
    }
};

Python3 Code:

class Solution:
    def coinChange(self, coins: List[int], amount: int) -> int:
        dp = [amount + 1] * (amount + 1)
        dp[0] = 0

        for i in range(1, amount + 1):
            for j in range(len(coins)):
                if i >= coins[j]:
                    dp[i] = min(dp[i], dp[i - coins[j]] + 1)

        return -1 if dp[-1] == amount + 1 else dp[-1]

复杂度分析

  • 时间复杂度:$O(amonut * len(coins))$

  • 空间复杂度:$O(amount)$

扩展

这是一道很简单描述的题目, 因此很多时候会被用到大公司的电面中。

相似问题:

518.coin-change-2

最后更新于