Kth-Pair-Distance

题目地址(822. Kth-Pair-Distance)

https://binarysearch.com/problems/Kth-Pair-Distance

题目描述

Given a list of integers nums and an integer k, return the k-th (0-indexed) smallest abs(x - y) for every pair of elements (x, y) in nums. Note that (x, y) and (y, x) are considered the same pair.

Constraints

n ≤ 100,000 where n is the length of nums
Example 1
Input
nums = [1, 5, 3, 2]
k = 3
Output
2
Explanation
Here are all the pair distances:

abs(1 - 5) = 4
abs(1 - 3) = 2
abs(1 - 2) = 1
abs(5 - 3) = 2
abs(5 - 2) = 3
abs(3 - 2) = 1
Sorted in ascending order we have [1, 1, 2, 2, 3, 4].

前置知识

  • 排序

  • 二分法

堆(超时)

思路

堆很适合动态求极值。我在堆的专题中也说了,使用固定堆可求第 k 大的或者第 k 小的数。这道题是求第 k 小的绝对值差。于是可将所有决定值差动态加入到大顶堆中,并保持堆的大小为 k 不变。这样堆顶的就是第 k 小的绝对值差啦。

其实也可用小顶堆保存所有的绝对值差,然后弹出 k 次,最后一次弹出的就是第 k 小的绝对值差啦。

可惜的是,不管使用哪种方法都无法通过。

代码

代码支持:Python3

Python3 Code:

class Solution:
    def solve(self, A, k):
        A.sort()
        h = [(A[i] - A[i-1], i-1,i) for i in range(1, len(A))]
        heapq.heapify(h)

        while True:
            top, i, j = heapq.heappop(h)
            if not k: return top
            k -= 1
            if j + 1 < len(A): heapq.heappush(h, (A[j+1] - A[i], i, j + 1))

二分法

思路

这道题是典型的计数二分。

计数二分基本就是求第 k 大(或者第 k 小)的数。其核心思想是找到一个数 x,使得小于等于 x 的数恰好有 k 个。

不能看出,有可能答案不止一个

对应到这道题来说就是找到一个绝对值差 diff,使得绝对值差小于等于 diff 的恰好有 k 个。

这种类型是否可用二分解决的关键在于:

如果小于等于 x 的数恰好有 p 个:

  1. p 小于 k,那么可舍弃一半解空间

  2. p 大于 k,同样可舍弃一半解空间

等于你看情况放

简单来说,就是让未知世界无机可乘。无论如何我都可以舍弃一半。

回到这道题,如果小于等于 diff 的绝对值差有大于 k 个,那么 diff 有点 大了,也就是说可以舍弃大于等于 diff 的所有值。反之也是类似,具体大家看代码吧。

最后只剩下两个问题:

  • 确定解空间上下界

  • 如果计算小于等于 diff 的有即可

第一个问题:下界是 0 ,下界是 max(nums) - min(min)。

第二个问题:可以使用双指针一次遍历解决。大家可以回忆趁此机会回忆一下双指针。具体地,首先对数组排序,然后使用右指针 j 和 左指针 i。如果 nums[j] - nums[i] 大于 diff,我们收缩 i 直到 nums[j] - nums[i] <= diff。这个时候,我们就可计算出以索引 j 结尾的绝对值差小于等于 diff 的个数,个数就是 j - i。我们可以使用滑动窗口技巧分别计算所有的 j 的个数,并将其累加起来就是答案。

代码

代码支持:Python3

Python3 Code:

class Solution:
    def solve(self, A, k):
        A.sort()
        def count_not_greater(diff):
            i = ans = 0
            for j in range(1, len(A)):
                while A[j] - A[i] > diff:
                    i += 1
                ans += j - i
            return ans
        l, r = 0, A[-1] - A[0]

        while l <= r:
            mid = (l + r) // 2
            if count_not_greater(mid) > k:
                r = mid - 1
            else:
                l = mid + 1
        return l

复杂度分析

令 n 为数组长度。

  • 时间复杂度:由于进行了排序, 因此时间复杂度大约是 $O(nlogn)$

  • 空间复杂度:取决于排序的空间消耗

力扣的小伙伴可以关注我,这样就会第一时间收到我的动态啦~

以上就是本文的全部内容了。大家对此有何看法,欢迎给我留言,我有时间都会一一查看回答。更多算法套路可以访问我的 LeetCode 题解仓库:https://github.com/azl397985856/leetcode 。 目前已经 40K star 啦。大家也可以关注我的公众号《力扣加加》带你啃下算法这块硬骨头。

最后更新于