0513. 找树左下角的值
题目地址(513. 找树左下角的值)
https://leetcode-cn.com/problems/find-bottom-left-tree-value/
题目描述
给定一个二叉树,在树的最后一行找到最左边的值。
示例 1:
输入:
2
/ \
1 3
输出:
1
示例 2:
输入:
1
/ \
2 3
/ / \
4 5 6
/
7
输出:
7
BFS
思路
其实问题本身就告诉你怎么做了
在树的最后一行找到最左边的值。
问题再分解一下
找到树的最后一行
找到那一行的第一个节点
不用层序遍历简直对不起这个问题,这里贴一下层序遍历的流程
令curLevel为第一层节点也就是root节点
定义nextLevel为下层节点
遍历node in curLevel,
nextLevel.push(node.left)
nextLevel.push(node.right)
令curLevel = nextLevel, 重复以上流程直到curLevel为空
代码
代码支持:JS,Python,Java,CPP, Go, PHP
JS Code:
var findBottomLeftValue = function (root) {
let curLevel = [root];
let res = root.val;
while (curLevel.length) {
let nextLevel = [];
for (let i = 0; i < curLevel.length; i++) {
curLevel[i].left && nextLevel.push(curLevel[i].left);
curLevel[i].right && nextLevel.push(curLevel[i].right);
}
res = curLevel[0].val;
curLevel = nextLevel;
}
return res;
};
Python Code:
class Solution(object):
def findBottomLeftValue(self, root):
queue = collections.deque()
queue.append(root)
while queue:
length = len(queue)
res = queue[0].val
for _ in range(length):
cur = queue.popleft()
if cur.left:
queue.append(cur.left)
if cur.right:
queue.append(cur.right)
return res
Java:
class Solution {
Map<Integer,Integer> map = new HashMap<>();
int maxLevel = 0;
public int findBottomLeftValue(TreeNode root) {
if (root == null) return 0;
LinkedList<TreeNode> deque = new LinkedList<>();
deque.add(root);
int res = 0;
while(!deque.isEmpty()) {
int size = deque.size();
for (int i = 0; i < size; i++) {
TreeNode node = deque.pollFirst();
if (i == 0) {
res = node.val;
}
if (node.left != null)deque.addLast(node.left);
if (node.right != null)deque.addLast(node.right);
}
}
return res;
}
}
CPP:
class Solution {
public:
int findBottomLeftValue_bfs(TreeNode* root) {
queue<TreeNode*> q;
TreeNode* ans = NULL;
q.push(root);
while (!q.empty()) {
ans = q.front();
int size = q.size();
while (size--) {
TreeNode* cur = q.front();
q.pop();
if (cur->left )
q.push(cur->left);
if (cur->right)
q.push(cur->right);
}
}
return ans->val;
}
}
Go Code:
/**
* Definition for a binary tree node.
* type TreeNode struct {
* Val int
* Left *TreeNode
* Right *TreeNode
* }
*/
func findBottomLeftValue(root *TreeNode) int {
res := root.Val
curLevel := []*TreeNode{root} // 一层层遍历
for len(curLevel) > 0 {
res = curLevel[0].Val
var nextLevel []*TreeNode
for _, node := range curLevel {
if node.Left != nil {
nextLevel = append(nextLevel, node.Left)
}
if node.Right != nil {
nextLevel = append(nextLevel, node.Right)
}
}
curLevel = nextLevel
}
return res
}
PHP Code:
/**
* Definition for a binary tree node.
* class TreeNode {
* public $val = null;
* public $left = null;
* public $right = null;
* function __construct($value) { $this->val = $value; }
* }
*/
class Solution
{
/**
* @param TreeNode $root
* @return Integer
*/
function findBottomLeftValue($root)
{
$curLevel = [$root];
$res = $root->val;
while (count($curLevel)) {
$nextLevel = [];
$res = $curLevel[0]->val;
foreach ($curLevel as $node) {
if ($node->left) $nextLevel[] = $node->left;
if ($node->right) $nextLevel[] = $node->right;
}
$curLevel = $nextLevel;
}
return $res;
}
}
复杂度分析
时间复杂度:$O(N)$,其中 N 为树的节点数。
空间复杂度:$O(Q)$,其中 Q 为队列长度,最坏的情况是满二叉树,此时和 N 同阶,其中 N 为树的节点总数
DFS
思路
树的最后一行找到最左边的值,转化一下就是找第一个出现的深度最大的节点,这里用先序遍历去做,其实中序遍历也可以,只需要保证左节点在右节点前被处理即可。 具体算法为,先序遍历 root,维护一个最大深度的变量,记录每个节点的深度,如果当前节点深度比最大深度要大,则更新最大深度和结果项。
代码
代码支持:JS,Python,Java,CPP
JS Code:
function findBottomLeftValue(root) {
let maxDepth = 0;
let res = root.val;
dfs(root.left, 0);
dfs(root.right, 0);
return res;
function dfs(cur, depth) {
if (!cur) {
return;
}
const curDepth = depth + 1;
if (curDepth > maxDepth) {
maxDepth = curDepth;
res = cur.val;
}
dfs(cur.left, curDepth);
dfs(cur.right, curDepth);
}
}
Python Code:
class Solution(object):
def __init__(self):
self.res = 0
self.max_level = 0
def findBottomLeftValue(self, root):
self.res = root.val
def dfs(root, level):
if not root:
return
if level > self.max_level:
self.res = root.val
self.max_level = level
dfs(root.left, level + 1)
dfs(root.right, level + 1)
dfs(root, 0)
return self.res
Java Code:
class Solution {
int max = 0;
Map<Integer,Integer> map = new HashMap<>();
public int findBottomLeftValue(TreeNode root) {
if (root == null) return 0;
dfs(root,0);
return map.get(max);
}
void dfs (TreeNode node,int level){
if (node == null){
return;
}
int curLevel = level+1;
dfs(node.left,curLevel);
if (curLevel > max && !map.containsKey(curLevel)){
map.put(curLevel,node.val);
max = curLevel;
}
dfs(node.right,curLevel);
}
}
CPP:
class Solution {
public:
int res;
int max_depth = 0;
void findBottomLeftValue_core(TreeNode* root, int depth) {
if (root->left || root->right) {
if (root->left)
findBottomLeftValue_core(root->left, depth + 1);
if (root->right)
findBottomLeftValue_core(root->right, depth + 1);
} else {
if (depth > max_depth) {
res = root->val;
max_depth = depth;
}
}
}
int findBottomLeftValue(TreeNode* root) {
findBottomLeftValue_core(root, 1);
return res;
}
};
复杂度分析
时间复杂度:$O(N)$,其中 N 为树的节点总数。
空间复杂度:$O(h)$,其中 h 为树的高度。
最后更新于