为了方便描述,不妨假设最终分割后,数组 nums1 左侧部分是 A,数组 nums2 左侧部分是 B。由于题中给出的数组都是排好序的,在排好序的数组中查找很容易想到可以用二分查找(Binary Search)·, 这里对数组长度小的做二分以减少时间复杂度。对较小的数组做二分可行的原因在于如果一个数组的索引 i 确定了,那么另一个数组的索引位置 j 也是确定的,因为 (i+1) + (j+1) 等于 (m + n + 1) / 2,其中 m 是数组 A 的长度, n 是数组 B 的长度。具体来说,我们可以保证数组 A 和 数组 B 做 partition 之后,len(Aleft)+len(Bleft)=(m+n+1)/2
接下来需要特别注意四个指针:leftp1, rightp1, leftp2, rightp2,分别表示 A 数组分割点,A 数组分割点右侧数,B 数组分割点,B 数组分割点右侧数。不过这里有两个临界点需要特殊处理:
如果分割点左侧没有数,即分割点索引是 0,那么其左侧应该设置为无限小。
如果分割点右侧没有数,即分割点索引是数组长度-1,那么其左侧应该设置为无限大。
如果我们二分之后满足:leftp1 < rightp2 and leftp2 < rightp1,那么说明分割是正确的,直接返回max(leftp1, leftp2)+min(rightp1, rightp2) 即可。否则,说明分割无效,我们需要调整分割点。
/** * 二分解法 * @param{number[]} nums1 * @param{number[]} nums2 * @return{number} */varfindMedianSortedArrays=function (nums1, nums2) {// make sure to do binary search for shorten arrayif (nums1.length>nums2.length) { [nums1, nums2] = [nums2, nums1]; }constm=nums1.length;constn=nums2.length;let low =0;let high = m;while (low <= high) {consti= low +Math.floor((high - low) /2);constj=Math.floor((m + n +1) /2) - i;constmaxLeftA= i ===0?-Infinity: nums1[i -1];constminRightA= i === m ?Infinity: nums1[i];constmaxLeftB= j ===0?-Infinity: nums2[j -1];constminRightB= j === n ?Infinity: nums2[j];if (maxLeftA <= minRightB && minRightA >= maxLeftB) {return (m + n) %2===1?Math.max(maxLeftA, maxLeftB): (Math.max(maxLeftA, maxLeftB) +Math.min(minRightA, minRightB)) /2; } elseif (maxLeftA > minRightB) { high = i -1; } else { low = low +1; } }};
Java Code:
classMedianSortedTwoArrayBinarySearch {publicstaticdoublefindMedianSortedArraysBinarySearch(int[] nums1,int[] nums2) {// do binary search for shorter length array, make sure time complexity log(min(m,n)).if (nums1.length>nums2.length) {returnfindMedianSortedArraysBinarySearch(nums2, nums1); }int m =nums1.length;int n =nums2.length;int lo =0;int hi = m;while (lo <= hi) {// partition A position iint i = lo + (hi - lo) /2;// partition B position jint j = (m + n +1) /2- i;int maxLeftA = i ==0?Integer.MIN_VALUE: nums1[i -1];int minRightA = i == m ?Integer.MAX_VALUE: nums1[i];int maxLeftB = j ==0?Integer.MIN_VALUE: nums2[j -1];int minRightB = j == n ?Integer.MAX_VALUE: nums2[j];if (maxLeftA <= minRightB && maxLeftB <= minRightA) {// total length is evenif ((m + n) %2==0) {return (double) (Math.max(maxLeftA, maxLeftB) +Math.min(minRightA, minRightB)) /2; } else {// total length is oddreturn (double) Math.max(maxLeftA, maxLeftB); } } elseif (maxLeftA > minRightB) {// binary search left half hi = i -1; } else {// binary search right half lo = i +1; } }return0.0; }}
CPP Code:
class Solution {
public:
double findMedianSortedArrays(vector<int>& nums1, vector<int>& nums2) {
if (nums1.size() > nums2.size()) swap(nums1, nums2);
int M = nums1.size(), N = nums2.size(), L = 0, R = M, K = (M + N + 1) / 2;
while (true) {
int i = (L + R) / 2, j = K - i;
if (i < M && nums2[j - 1] > nums1[i]) L = i + 1;
else if (i > L && nums1[i - 1] > nums2[j]) R = i - 1;
else {
int maxLeft = max(i ? nums1[i - 1] : INT_MIN, j ? nums2[j - 1] : INT_MIN);
if ((M + N) % 2) return maxLeft;
int minRight = min(i == M ? INT_MAX : nums1[i], j == N ? INT_MAX : nums2[j]);
return (maxLeft + minRight) / 2.0;
}
}
}
};
Python3 Code:
classSolution:deffindMedianSortedArrays(self,nums1: List[int],nums2: List[int]) ->float: N =len(nums1) M =len(nums2)if N > M:return self.findMedianSortedArrays(nums2, nums1) lo =0 hi = N combined = N + Mwhile lo <= hi: mid1 = lo + hi >>1 mid2 = ((combined +1) >>1) - mid1 leftp1 =-float("inf")if mid1 ==0else nums1[mid1 -1] rightp1 =float("inf")if mid1 == N else nums1[mid1] leftp2 =-float("inf")if mid2 ==0else nums2[mid2 -1] rightp2 =float("inf")if mid2 == M else nums2[mid2]# Check if the partition is valid for the case ofif leftp1 <= rightp2 and leftp2 <= rightp1:if combined %2==0:return (max(leftp1, leftp2)+min(rightp1, rightp2)) /2.0returnmax(leftp1, leftp2)else:if leftp1 > rightp2: hi = mid1 -1else: lo = mid1 +1return-1
复杂度分析
时间复杂度:$O(log(min(m, n)))$
空间复杂度:$O(log(min(m, n)))$
大家对此有何看法,欢迎给我留言,我有时间都会一一查看回答。更多算法套路可以访问我的 LeetCode 题解仓库:https://github.com/azl397985856/leetcode 。 目前已经 40K star 啦。 大家也可以关注我的公众号《力扣加加》带你啃下算法这块硬骨头。