力扣加加 - 努力做西湖区最好的算法题解
  • introduction
  • 第一章 - 算法专题
    • 数据结构
    • 链表专题
    • 树专题
    • 堆专题(上)
    • 堆专题(下)
    • 二分专题(上)
    • 二分专题(下)
    • 动态规划(重置版)
    • 大话搜索
    • 二叉树的遍历
    • 哈夫曼编码和游程编码
    • 布隆过滤器
    • 前缀树
    • 回溯
    • 滑动窗口(思路 + 模板)
    • 位运算
    • 小岛问题
    • 最大公约数
    • 并查集
    • 平衡二叉树专题
    • 蓄水池抽样
    • 单调栈
  • 第二章 - 91 天学算法
    • 91 天学算法第三期视频会议总结
    • 第一期讲义-二分法
    • 第一期讲义-双指针
    • 第三期正在火热进行中
  • 第三章 - 精选题解
    • 字典序列删除
    • 西法的刷题秘籍】一次搞定前缀和
    • 字节跳动的算法面试题是什么难度?
    • 字节跳动的算法面试题是什么难度?(第二弹)
    • 《我是你的妈妈呀》 * 第一期
    • 一文带你看懂二叉树的序列化
    • 穿上衣服我就不认识你了?来聊聊最长上升子序列
    • 你的衣服我扒了 * 《最长公共子序列》
    • 一文看懂《最大子序列和问题》
  • 第四章 - 高频考题(简单)
    • 面试题 17.12. BiNode
    • 0001. 两数之和
    • 0020. 有效的括号
    • 0021. 合并两个有序链表
    • 0026. 删除排序数组中的重复项
    • 0053. 最大子序和
    • 0160. 相交链表
    • 0066. 加一
    • 0088. 合并两个有序数组
    • 0101. 对称二叉树
    • 0104. 二叉树的最大深度
    • 0108. 将有序数组转换为二叉搜索树
    • 0121. 买卖股票的最佳时机
    • 0122. 买卖股票的最佳时机 II
    • 0125. 验证回文串
    • 0136. 只出现一次的数字
    • 0155. 最小栈
    • 0167. 两数之和 II 输入有序数组
    • 0169. 多数元素
    • 0172. 阶乘后的零
    • 0190. 颠倒二进制位
    • 0191. 位 1 的个数
    • 0198. 打家劫舍
    • 0203. 移除链表元素
    • 0206. 反转链表
    • 0219. 存在重复元素 II
    • 0226. 翻转二叉树
    • 0232. 用栈实现队列
    • 0263. 丑数
    • 0283. 移动零
    • 0342. 4 的幂
    • 0349. 两个数组的交集
    • 0371. 两整数之和
    • 401. 二进制手表
    • 0437. 路径总和 III
    • 0455. 分发饼干
    • 0504. 七进制数
    • 0575. 分糖果
    • 0665. 非递减数列
    • 0661. 图片平滑器
    • 821. 字符的最短距离
    • 0874. 模拟行走机器人
    • 1128. 等价多米诺骨牌对的数量
    • 1260. 二维网格迁移
    • 1332. 删除回文子序列
    • 2591. 将钱分给最多的儿童
  • 第五章 - 高频考题(中等)
    • 面试题 17.09. 第 k 个数
    • 面试题 17.23. 最大黑方阵
    • 面试题 16.16. 部分排序
    • Increasing Digits
    • Longest Contiguously Strictly Increasing Sublist After Deletion
    • Consecutive Wins
    • Number of Substrings with Single Character Difference
    • Bus Fare
    • Minimum Dropping Path Sum
    • Every Sublist Min Sum
    • Maximize the Number of Equivalent Pairs After Swaps
    • 0002. 两数相加
    • 0003. 无重复字符的最长子串
    • 0005. 最长回文子串
    • 0011. 盛最多水的容器
    • 0015. 三数之和
    • 0017. 电话号码的字母组合
    • 0019. 删除链表的倒数第 N 个节点
    • 0022. 括号生成
    • 0024. 两两交换链表中的节点
    • 0029. 两数相除
    • 0031. 下一个排列
    • 0033. 搜索旋转排序数组
    • 0039. 组合总和
    • 0040. 组合总和 II
    • 0046. 全排列
    • 0047. 全排列 II
    • 0048. 旋转图像
    • 0049. 字母异位词分组
    • 0050. Pow(x, n)
    • 0055. 跳跃游戏
    • 0056. 合并区间
    • 0060. 第 k 个排列
    • 0061. 旋转链表
    • 0062. 不同路径
    • 0073. 矩阵置零
    • 0075. 颜色分类
    • 0078. 子集
    • 0079. 单词搜索
    • 0080. 删除排序数组中的重复项 II
    • 0086. 分隔链表
    • 0090. 子集 II
    • 0091. 解码方法
    • 0092. 反转链表 II
    • 0094. 二叉树的中序遍历
    • 0095. 不同的二叉搜索树 II
    • 0096. 不同的二叉搜索树
    • 0098. 验证二叉搜索树
    • 0102. 二叉树的层序遍历
    • 0103. 二叉树的锯齿形层次遍历
    • 0113. 路径总和 II
    • 0129. 求根到叶子节点数字之和
    • 0130. 被围绕的区域
    • 0131. 分割回文串
    • 0139. 单词拆分
    • 0144. 二叉树的前序遍历
    • 0147. 对链表进行插入排序
    • 0150. 逆波兰表达式求值
    • 0152. 乘积最大子数组
    • 0153. 寻找旋转排序数组中的最小值
    • 0199. 二叉树的右视图
    • 0200. 岛屿数量
    • 0201. 数字范围按位与
    • 0208. 实现 Trie (前缀树)
    • 0209. 长度最小的子数组
    • 0211. 添加与搜索单词 - 数据结构设计
    • 0215. 数组中的第 K 个最大元素
    • 0220. 存在重复元素 III
    • 0221. 最大正方形
    • 0227. 基本计算器 II
    • 0229. 求众数 II
    • 0230. 二叉搜索树中第 K 小的元素
    • 0236. 二叉树的最近公共祖先
    • 0238. 除自身以外数组的乘积
    • 0240. 搜索二维矩阵 II
    • 0279. 完全平方数
    • 0309. 最佳买卖股票时机含冷冻期
    • 0322. 零钱兑换
    • 0324. 摆动排序 II
    • 0328. 奇偶链表
    • 0331. 验证二叉树的前序序列化
    • 0334. 递增的三元子序列
    • 0337. 打家劫舍 III
    • 0343. 整数拆分
    • 0365. 水壶问题
    • 0378. 有序矩阵中第 K 小的元素
    • 0380. 常数时间插入、删除和获取随机元素
    • 0394. 字符串解码
    • 0416. 分割等和子集
    • 0424. 替换后的最长重复字符
    • 0438. 找到字符串中所有字母异位词
    • 0445. 两数相加 II
    • 0454. 四数相加 II
    • 0456. 132 模式
    • 0457.457. 环形数组是否存在循环
    • 0464. 我能赢么
    • 0470. 用 Rand7() 实现 Rand10
    • 0473. 火柴拼正方形
    • 0494. 目标和
    • 0516. 最长回文子序列
    • 0513. 找树左下角的值
    • 0518. 零钱兑换 II
    • 0525. 连续数组
    • 0547. 朋友圈
    • 0560. 和为 K 的子数组
    • 0609. 在系统中查找重复文件
    • 0611. 有效三角形的个数
    • 0673. 最长递增子序列的个数
    • 0686. 重复叠加字符串匹配
    • 0710. 黑名单中的随机数
    • 0714. 买卖股票的最佳时机含手续费
    • 0718. 最长重复子数组
    • 0735. 行星碰撞
    • 0754. 到达终点数字
    • 0785. 判断二分图
    • 0790. 多米诺和托米诺平铺
    • 0799. 香槟塔
    • 0801. 使序列递增的最小交换次数
    • 0816. 模糊坐标
    • 0820. 单词的压缩编码
    • 0838. 推多米诺
    • 0873. 最长的斐波那契子序列的长度
    • 0875. 爱吃香蕉的珂珂
    • 0877. 石子游戏
    • 0886. 可能的二分法
    • 0898. 子数组按位或操作
    • 0900. RLE 迭代器
    • 0911. 在线选举
    • 0912. 排序数组
    • 0932. 漂亮数组
    • 0935. 骑士拨号器
    • 0947. 移除最多的同行或同列石头
    • 0959. 由斜杠划分区域
    • 0978. 最长湍流子数组
    • 0987. 二叉树的垂序遍历
    • 1004. 最大连续 1 的个数 III
    • 1011. 在 D 天内送达包裹的能力
    • 1014. 最佳观光组合
    • 1015. 可被 K 整除的最小整数
    • 1019. 链表中的下一个更大节点
    • 1020. 飞地的数量
    • 1023. 驼峰式匹配
    • 1031. 两个非重叠子数组的最大和
    • 1043. 分隔数组以得到最大和
    • 1053. 交换一次的先前排列)
    • 1104. 二叉树寻路
    • 1129. 颜色交替的最短路径
    • 1131.绝对值表达式的最大值
    • 1138. 字母板上的路径
    • 1186. 删除一次得到子数组最大和
    • 1218. 最长定差子序列
    • 1227. 飞机座位分配概率
    • 1261. 在受污染的二叉树中查找元素
    • 1262. 可被三整除的最大和
    • 1297. 子串的最大出现次数
    • 1310. 子数组异或查询
    • 1334. 阈值距离内邻居最少的城市
    • 1371.每个元音包含偶数次的最长子字符串
    • 1381. 设计一个支持增量操作的栈
    • 1438. 绝对差不超过限制的最长连续子数组
    • 1558. 得到目标数组的最少函数调用次数
    • 1574. 删除最短的子数组使剩余数组有序
    • 1631. 最小体力消耗路径
    • 1638. 统计只差一个字符的子串数目
    • 1658. 将 x 减到 0 的最小操作数
    • 1697. 检查边长度限制的路径是否存在
    • 1737. 满足三条件之一需改变的最少字符数
    • 1770. 执行乘法运算的最大分数
    • 1793. 好子数组的最大分数
    • 1834. 单线程 CPU
    • 1899. 合并若干三元组以形成目标三元组
    • 1904. 你完成的完整对局数
    • 1906. 查询差绝对值的最小值
    • 1906. 查询差绝对值的最小值
    • 2007. 从双倍数组中还原原数组
    • 2008. 出租车的最大盈利
    • 2100. 适合打劫银行的日子
    • 2101. 引爆最多的炸弹
    • 2121. 相同元素的间隔之和
    • 2207. 字符串中最多数目的子字符串
    • 2592. 最大化数组的伟大值
    • 2593. 标记所有元素后数组的分数
    • 2817. 限制条件下元素之间的最小绝对差
    • 2865. 美丽塔 I
    • 2866. 美丽塔 II
    • 2939. 最大异或乘积
    • 3377. 使两个整数相等的数位操作
    • 3404. 统计特殊子序列的数目
    • 3428. 至多 K 个子序列的最大和最小和
  • 第六章 - 高频考题(困难)
    • LCP 20. 快速公交
    • LCP 21. 追逐游戏
    • Number Stream to Intervals
    • Triple-Inversion
    • Kth-Pair-Distance
    • Minimum-Light-Radius
    • Largest Equivalent Set of Pairs
    • Ticket-Order.md
    • Connected-Road-to-Destination
    • 0004. 寻找两个正序数组的中位数
    • 0023. 合并 K 个升序链表
    • 0025. K 个一组翻转链表
    • 0030. 串联所有单词的子串
    • 0032. 最长有效括号
    • 0042. 接雨水
    • 0052. N 皇后 II
    • 0057. 插入区间
    • 0065. 有效数字
    • 0084. 柱状图中最大的矩形
    • 0085. 最大矩形
    • 0087. 扰乱字符串
    • 0124. 二叉树中的最大路径和
    • 0128. 最长连续序列
    • 0132. 分割回文串 II
    • 0140. 单词拆分 II
    • 0145. 二叉树的后序遍历
    • 0146. LRU 缓存机制
    • 0154. 寻找旋转排序数组中的最小值 II
    • 0212. 单词搜索 II
    • 0239. 滑动窗口最大值
    • 0295. 数据流的中位数
    • 0297. 二叉树的序列化与反序列化
    • 0301. 删除无效的括号
    • 0312. 戳气球
    • 330. 按要求补齐数组
    • 0335. 路径交叉
    • 0460. LFU 缓存
    • 0472. 连接词
    • 0480. 滑动窗口中位数
    • 0483. 最小好进制
    • 0488. 祖玛游戏
    • 0493. 翻转对
    • 0664. 奇怪的打印机
    • 0679. 24 点游戏
    • 0715. Range 模块
    • 0726. 原子的数量
    • 0768. 最多能完成排序的块 II
    • 0805. 数组的均值分割
    • 0839. 相似字符串组
    • 0887. 鸡蛋掉落
    • 0895. 最大频率栈
    • 0975. 奇偶跳
    • 0995. K 连续位的最小翻转次数
    • 1032. 字符流
    • 1168. 水资源分配优化
    • 1178. 猜字谜
    • 1203. 项目管理
    • 1255. 得分最高的单词集合
    • 1345. 跳跃游戏 IV
    • 1449. 数位成本和为目标值的最大数字
    • 1494. 并行课程 II
    • 1521. 找到最接近目标值的函数值
    • 1526. 形成目标数组的子数组最少增加次数
    • 1639. 通过给定词典构造目标字符串的方案数
    • 1649. 通过指令创建有序数组
    • 1671. 得到山形数组的最少删除次数
    • 1707. 与数组中元素的最大异或值
    • 1713. 得到子序列的最少操作次数
    • 1723. 完成所有工作的最短时间
    • 1787. 使所有区间的异或结果为零
    • 1835. 所有数对按位与结果的异或和
    • 1871. 跳跃游戏 VII
    • 1872. 石子游戏 VIII
    • 1883. 准时抵达会议现场的最小跳过休息次数
    • 1970. 你能穿过矩阵的最后一天
    • 2009. 使数组连续的最少操作数
    • 2025. 分割数组的最多方案数
    • 2030. 含特定字母的最小子序列
    • 2102. 序列顺序查询
    • 2141. 同时运行 N 台电脑的最长时间
    • 2179. 统计数组中好三元组数目 👍
    • 2209. 用地毯覆盖后的最少白色砖块
    • 2281.sum-of-total-strength-of-wizards
    • 2306. 公司命名
    • 2312. 卖木头块
    • 2842. 统计一个字符串的 k 子序列美丽值最大的数目
    • 2972. 统计移除递增子数组的数目 II
    • 3027. 人员站位的方案数 II
    • 3041. 修改数组后最大化数组中的连续元素数目
    • 3082. 求出所有子序列的能量和
    • 3108. 带权图里旅途的最小代价
    • 3347. 执行操作后元素的最高频率 II
    • 3336. 最大公约数相等的子序列数量
    • 3410. 删除所有值为某个元素后的最大子数组和
  • 后序
由 GitBook 提供支持
在本页
  • 题目地址(4. 寻找两个正序数组的中位数)
  • 题目描述
  • 前置知识
  • 公司
  • 暴力法
  • 二分查找

这有帮助吗?

  1. 第六章 - 高频考题(困难)

0004. 寻找两个正序数组的中位数

题目地址(4. 寻找两个正序数组的中位数)

https://leetcode-cn.com/problems/median-of-two-sorted-arrays/

题目描述

给定两个大小为 m 和 n 的正序(从小到大)数组 nums1 和 nums2。

请你找出这两个正序数组的中位数,并且要求算法的时间复杂度为 O(log(m + n))。

你可以假设 nums1 和 nums2 不会同时为空。

 

示例 1:

nums1 = [1, 3]
nums2 = [2]

则中位数是 2.0
示例 2:

nums1 = [1, 2]
nums2 = [3, 4]

则中位数是 (2 + 3)/2 = 2.5

前置知识

  • 中位数

  • 分治法

  • 二分查找

公司

  • 阿里

  • 百度

  • 腾讯

暴力法

思路

首先了解一下 Median 的概念,一个数组中 median 就是把数组分成左右等分的中位数。

如下图:

知道了概念,我们先来看下如何使用暴力法来解决。

试了一下,暴力解法也是可以被 Leetcode Accept 的。

暴力解主要是要 merge 两个排序的数组(A,B)成一个排序的数组。

用两个pointer(i,j),i 从数组A起始位置开始,即i=0开始,j 从数组B起始位置, 即j=0开始. 一一比较 A[i] 和 B[j],

  1. 如果A[i] <= B[j], 则把A[i] 放入新的数组中,i 往后移一位,即 i+1.

  2. 如果A[i] > B[j], 则把B[j] 放入新的数组中,j 往后移一位,即 j+1.

  3. 重复步骤#1 和 #2,直到i移到A最后,或者j移到B最后。

  4. 如果j移动到B数组最后,那么直接把剩下的所有A依次放入新的数组中.

  5. 如果i移动到A数组最后,那么直接把剩下的所有B依次放入新的数组中.

整个过程类似归并排序的合并过程

时间复杂度和空间复杂度都是O(m+n), 不符合题中给出O(log(m+n))时间复杂度的要求。

代码

代码支持: Java,JS:

Java Code:

class MedianTwoSortedArrayBruteForce {
    public double findMedianSortedArrays(int[] nums1, int[] nums2) {
      int[] newArr = mergeTwoSortedArray(nums1, nums2);
      int n = newArr.length;
      if (n % 2 == 0) {
        // even
        return (double) (newArr[n / 2] + newArr[n / 2 - 1]) / 2;
      } else {
        // odd
        return (double) newArr[n / 2];
      }
    }
    private int[] mergeTwoSortedArray(int[] nums1, int[] nums2) {
      int m = nums1.length;
      int n = nums2.length;
      int[] res = new int[m + n];
      int i = 0;
      int j = 0;
      int idx = 0;
      while (i < m && j < n) {
        if (nums1[i] <= nums2[j]) {
          res[idx++] = nums1[i++];
        } else {
          res[idx++] = nums2[j++];
        }
      }
      while (i < m) {
        res[idx++] = nums1[i++];
      }
      while (j < n) {
        res[idx++] = nums2[j++];
      }
      return res;
    }
}

JS Code:

/**
 * @param {number[]} nums1
 * @param {number[]} nums2
 * @return {number}
 */
var findMedianSortedArrays = function (nums1, nums2) {
  // 归并排序
  const merged = [];
  let i = 0;
  let j = 0;
  while (i < nums1.length && j < nums2.length) {
    if (nums1[i] < nums2[j]) {
      merged.push(nums1[i++]);
    } else {
      merged.push(nums2[j++]);
    }
  }
  while (i < nums1.length) {
    merged.push(nums1[i++]);
  }
  while (j < nums2.length) {
    merged.push(nums2[j++]);
  }

  const { length } = merged;
  return length % 2 === 1
    ? merged[Math.floor(length / 2)]
    : (merged[length / 2] + merged[length / 2 - 1]) / 2;
};

复杂度分析

  • 时间复杂度:$O(max(m, n))$

  • 空间复杂度:$O(m + n)$

二分查找

思路

如果我们把上一种方法的最终结果拿出来单独看的话,不难发现最终结果就是 nums1 和 nums 两个数组交错形成的新数组,也就是说 nums1 和 nums2 的相对位置并不会发生变化,这是本题的关键信息之一。

为了方便描述,不妨假设最终分割后,数组 nums1 左侧部分是 A,数组 nums2 左侧部分是 B。由于题中给出的数组都是排好序的,在排好序的数组中查找很容易想到可以用二分查找(Binary Search)·, 这里对数组长度小的做二分以减少时间复杂度。对较小的数组做二分可行的原因在于如果一个数组的索引 i 确定了,那么另一个数组的索引位置 j 也是确定的,因为 (i+1) + (j+1) 等于 (m + n + 1) / 2,其中 m 是数组 A 的长度, n 是数组 B 的长度。具体来说,我们可以保证数组 A 和 数组 B 做 partition 之后,len(Aleft)+len(Bleft)=(m+n+1)/2

接下来需要特别注意四个指针:leftp1, rightp1, leftp2, rightp2,分别表示 A 数组分割点,A 数组分割点右侧数,B 数组分割点,B 数组分割点右侧数。不过这里有两个临界点需要特殊处理:

  • 如果分割点左侧没有数,即分割点索引是 0,那么其左侧应该设置为无限小。

  • 如果分割点右侧没有数,即分割点索引是数组长度-1,那么其左侧应该设置为无限大。

如果我们二分之后满足:leftp1 < rightp2 and leftp2 < rightp1,那么说明分割是正确的,直接返回max(leftp1, leftp2)+min(rightp1, rightp2) 即可。否则,说明分割无效,我们需要调整分割点。

如何调整呢?实际上只需要判断 leftp1 > rightp2 的大小关系即可。如果 leftp1 > rightp2,那么说明 leftp1 太大了,我们可以通过缩小上界来降低 leftp1,否则我们需要扩大下界。

核心代码:

if leftp1 > rightp2:
    hi = mid1 - 1
else:
    lo = mid1 + 1

上面的调整上下界的代码是建立在对数组 nums1 进行二分的基础上的,如果我们对数组 nums2 进行二分,那么相应地需要改为:

if leftp2 > rightp1:
    hi = mid2 - 1
else:
    lo = mid2 + 1

下面我们通过一个具体的例子来说明。

比如对数组 A 的做 partition 的位置是区间[0,m]

下图给出几种不同情况的例子(注意但左边或者右边没有元素的时候,左边用INF_MIN,右边用INF_MAX表示左右的元素:

下图给出具体做的 partition 解题的例子步骤,

这个算法关键在于:

  1. 要 partition 两个排好序的数组成左右两等份,partition 需要满足len(Aleft)+len(Bleft)=(m+n+1)/2 - m是数组A的长度, n是数组B的长度,

  2. 且 partition 后 A 左边最大(maxLeftA), A 右边最小(minRightA), B 左边最大(maxLeftB), B 右边最小(minRightB) 满足 (maxLeftA <= minRightB && maxLeftB <= minRightA)

关键点分析

  • 有序数组容易想到二分查找

  • 对小的数组进行二分可降低时间复杂度

  • 根据 leftp1,rightp2,leftp2 和 rightp1 的大小关系确定结束点和收缩方向

代码

代码支持:JS,CPP, Python3,

JS Code:

/**
 * 二分解法
 * @param {number[]} nums1
 * @param {number[]} nums2
 * @return {number}
 */
var findMedianSortedArrays = function (nums1, nums2) {
  // make sure to do binary search for shorten array
  if (nums1.length > nums2.length) {
    [nums1, nums2] = [nums2, nums1];
  }
  const m = nums1.length;
  const n = nums2.length;
  let low = 0;
  let high = m;
  while (low <= high) {
    const i = low + Math.floor((high - low) / 2);
    const j = Math.floor((m + n + 1) / 2) - i;

    const maxLeftA = i === 0 ? -Infinity : nums1[i - 1];
    const minRightA = i === m ? Infinity : nums1[i];
    const maxLeftB = j === 0 ? -Infinity : nums2[j - 1];
    const minRightB = j === n ? Infinity : nums2[j];

    if (maxLeftA <= minRightB && minRightA >= maxLeftB) {
      return (m + n) % 2 === 1
        ? Math.max(maxLeftA, maxLeftB)
        : (Math.max(maxLeftA, maxLeftB) + Math.min(minRightA, minRightB)) / 2;
    } else if (maxLeftA > minRightB) {
      high = i - 1;
    } else {
      low = low + 1;
    }
  }
};

Java Code:

class MedianSortedTwoArrayBinarySearch {
  public static double findMedianSortedArraysBinarySearch(int[] nums1, int[] nums2) {
     // do binary search for shorter length array, make sure time complexity log(min(m,n)).
     if (nums1.length > nums2.length) {
        return findMedianSortedArraysBinarySearch(nums2, nums1);
      }
      int m = nums1.length;
      int n = nums2.length;
      int lo = 0;
      int hi = m;
      while (lo <= hi) {
        // partition A position i
        int i = lo + (hi - lo) / 2;
        // partition B position j
        int j = (m + n + 1) / 2 - i;

        int maxLeftA = i == 0 ? Integer.MIN_VALUE : nums1[i - 1];
        int minRightA = i == m ? Integer.MAX_VALUE : nums1[i];

        int maxLeftB = j == 0 ? Integer.MIN_VALUE : nums2[j - 1];
        int minRightB = j == n ? Integer.MAX_VALUE : nums2[j];

        if (maxLeftA <= minRightB && maxLeftB <= minRightA) {
          // total length is even
          if ((m + n) % 2 == 0) {
            return (double) (Math.max(maxLeftA, maxLeftB) + Math.min(minRightA, minRightB)) / 2;
          } else {
            // total length is odd
            return (double) Math.max(maxLeftA, maxLeftB);
          }
        } else if (maxLeftA > minRightB) {
          // binary search left half
          hi = i - 1;
        } else {
          // binary search right half
          lo = i + 1;
        }
      }
      return 0.0;
    }
}

CPP Code:

class Solution {
public:
    double findMedianSortedArrays(vector<int>& nums1, vector<int>& nums2) {
        if (nums1.size() > nums2.size()) swap(nums1, nums2);
        int M = nums1.size(), N = nums2.size(), L = 0, R = M, K = (M + N + 1) / 2;
        while (true) {
            int i = (L + R) / 2, j = K - i;
            if (i < M && nums2[j - 1] > nums1[i]) L = i + 1;
            else if (i > L && nums1[i - 1] > nums2[j]) R = i - 1;
            else {
                int maxLeft = max(i ? nums1[i - 1] : INT_MIN, j ? nums2[j - 1] : INT_MIN);
                if ((M + N) % 2) return maxLeft;
                int minRight = min(i == M ? INT_MAX : nums1[i], j == N ? INT_MAX : nums2[j]);
                return (maxLeft + minRight) / 2.0;
            }
        }
    }
};

Python3 Code:

class Solution:
    def findMedianSortedArrays(self, nums1: List[int], nums2: List[int]) -> float:
        N = len(nums1)
        M = len(nums2)
        if N > M:
            return self.findMedianSortedArrays(nums2, nums1)

        lo = 0
        hi = N
        combined = N + M

        while lo <= hi:
            mid1 = lo + hi >> 1
            mid2 = ((combined + 1) >> 1) - mid1

            leftp1 = -float("inf") if mid1 == 0 else nums1[mid1 - 1]
            rightp1 = float("inf") if mid1 == N else nums1[mid1]

            leftp2 = -float("inf") if mid2 == 0 else nums2[mid2 - 1]
            rightp2 = float("inf") if mid2 == M else nums2[mid2]

            # Check if the partition is valid for the case of
            if leftp1 <= rightp2 and leftp2 <= rightp1:
                if combined % 2 == 0:
                    return (max(leftp1, leftp2)+min(rightp1, rightp2)) / 2.0

                return max(leftp1, leftp2)
            else:
                if leftp1 > rightp2:
                    hi = mid1 - 1
                else:
                    lo = mid1 + 1
        return -1

复杂度分析

  • 时间复杂度:$O(log(min(m, n)))$

  • 空间复杂度:$O(log(min(m, n)))$

大家对此有何看法,欢迎给我留言,我有时间都会一一查看回答。更多算法套路可以访问我的 LeetCode 题解仓库:https://github.com/azl397985856/leetcode 。 目前已经 40K star 啦。 大家也可以关注我的公众号《力扣加加》带你啃下算法这块硬骨头。

上一页Connected-Road-to-Destination下一页0023. 合并 K 个升序链表

最后更新于2年前

这有帮助吗?

中位数概念

Merge 的过程如下图。

如图:

实例解析
更详细的实例解析
暴力法图解
详细算法图解