0365. 水壶问题

题目地址(365. 水壶问题)

https://leetcode-cn.com/problems/water-and-jug-problem/

题目描述

有两个容量分别为 x升 和 y升 的水壶以及无限多的水。请判断能否通过使用这两个水壶,从而可以得到恰好 z升 的水?

如果可以,最后请用以上水壶中的一或两个来盛放取得的 z升 水。

你允许:

装满任意一个水壶
清空任意一个水壶
从一个水壶向另外一个水壶倒水,直到装满或者倒空
示例 1: (From the famous "Die Hard" example)

输入: x = 3, y = 5, z = 4
输出: True
示例 2:

输入: x = 2, y = 6, z = 5
输出: False

BFS(超时)

前置知识

  • BFS

  • 最大公约数

公司

  • 阿里

  • 百度

  • 字节

思路

两个水壶的水我们考虑成状态,然后我们不断进行倒的操作,改变状态。那么初始状态就是(0 0) 目标状态就是 (any, z)或者 (z, any),其中 any 指的是任意升水。

已题目的例子,其过程示意图,其中括号表示其是由哪个状态转移过来的:

0 0 3 5(0 0) 3 0 (0 0 )0 5(0 0) 3 2(0 5) 0 3(0 0) 0 2(3 2) 2 0(0 2) 2 5(2 0) 3 4(2 5) bingo

代码

复杂度分析

  • 时间复杂度:由于状态最多有$O((x + 1) * (y + 1))$ 种,因此总的时间复杂度为$O(x * y)$。

  • 空间复杂度:我们使用了队列来存储状态,set 存储已经访问的元素,空间复杂度和状态数目一致,因此空间复杂度是$O(x * y)$。

上面的思路很直观,但是很遗憾这个算法在 LeetCode 的表现是 TLE(Time Limit Exceeded)。不过如果你能在真实面试中写出这样的算法,我相信大多数情况是可以过关的。

我们来看一下有没有别的解法。实际上,上面的算法就是一个标准的 BFS。如果从更深层次去看这道题,会发现这道题其实是一道纯数学问题,类似的纯数学问题在 LeetCode 中也会有一些,不过大多数这种题目,我们仍然可以采取其他方式 AC。那么让我们来看一下如何用数学的方式来解这个题。

数学法 - 最大公约数

思路

这是一道关于数论的题目,确切地说是关于裴蜀定理(英语:Bézout's identity)的题目。

摘自 wiki 的定义:

因此这道题可以完全转化为裴蜀定理。还是以题目给的例子x = 3, y = 5, z = 4,我们其实可以表示成3 * 3 - 1 * 5 = 4, 即3 * x - 1 * y = z。我们用 a 和 b 分别表示 3 升的水壶和 5 升的水壶。那么我们可以:

  • 倒满 a(1

  • 将 a 倒到 b

  • 再次倒满 a(2

  • 再次将 a 倒到 b(a 这个时候还剩下 1 升)

  • 倒空 b(-1

  • 将剩下的 1 升倒到 b

  • 将 a 倒满(3

  • 将 a 倒到 b

  • b 此时正好是 4 升

上面的过程就是3 * x - 1 * y = z的具体过程解释。

也就是说我们只需要求出 x 和 y 的最大公约数 d,并判断 z 是否是 d 的整数倍即可。

代码

代码支持:Python3,JavaScript

Python Code:

JavaScript:

实际上求最大公约数还有更好的方式,比如辗转相除法:

复杂度分析

  • 时间复杂度:$O(log(max(a, b)))$

  • 空间复杂度:空间复杂度取决于递归的深度,因此空间复杂度为 $O(log(max(a, b)))$

关键点分析

  • 数论

  • 裴蜀定理

大家对此有何看法,欢迎给我留言,我有时间都会一一查看回答。更多算法套路可以访问我的 LeetCode 题解仓库:https://github.com/azl397985856/leetcode 。 目前已经 37K star 啦。 大家也可以关注我的公众号《力扣加加》带你啃下算法这块硬骨头。

最后更新于

这有帮助吗?